- Mathematical subfields come and go over the centuries
- What is “mathematical maturity”
- Pre-rigorous
- Rigorous
- Post-rigorous

- Model of the discipline of mathematics, (knowing what is known, knowing where lies opportunities for discovery)
- Definition-theorem structure (c.f. ProofWiki)
- Formalizing intuition gives insights; opportunities in model of discipline of mathematics result in new intuitions to formalize
- We can shoehorn this conversation of discipline and formalization into Hegelian synthesis
- Relationship between mathematics and other fields
- Explored mathematical subfields occasionally map to generalizable patterns in life (c.f. electrodynamic waves, epidemic propagation)
- Explored theorems in mathematics converse with observations
- Models are contextualized instances of the definiton-theorem structure
- Definition-theorem structure as a language to express objectives in the discipline and in real-world motivations; consider the definition-theorem structure and models a more expressive form of logical structure and syllogistic arguments.

Advertisements
(function(g){if("undefined"!=typeof g.__ATA){g.__ATA.initAd({sectionId:26942, width:300, height:250});
g.__ATA.initAd({sectionId:114160, width:300, height:250});}})(window);
var o = document.getElementById('crt-1763636255');
if ("undefined"!=typeof Criteo) {
var p = o.parentNode;
p.style.setProperty('display', 'inline-block', 'important');
o.style.setProperty('display', 'block', 'important');
Criteo.DisplayAcceptableAdIfAdblocked({zoneid:388248,containerid:"crt-1763636255",collapseContainerIfNotAdblocked:true,"callifnotadblocked": function () {var o = document.getElementById('crt-1763636255'); o.style.setProperty('display','none','important');o.style.setProperty('visbility','hidden','important'); }
});
} else {
o.style.setProperty('display', 'none', 'important');
o.style.setProperty('visibility', 'hidden', 'important');
}